

Sexually－transmitted diseases or STDs can now be transferred to a person even without having sexual intercourse． Worse，the research found out that it can also be acquired through simply swimming in an ocean．How can this be possible？

How do you get STD？By swimming in the Arctic ocean，apparently

TECL TIMDS
Love Tech Times？Let＇s Keep in Touch！ sign up for our email newsletter today

MOST POPULAR

British Skiers with＇Most Aggressive
COVID－19 Strain Are No Longer Welcome
in Saalbach

Phylogenetic
 Analysis

The Point

Use the relationships among one or (ideally) many homologous characters to reconstruct an evolutionary tree

Often means aligned sequences (with homologous residues in columns)

I think

Haeckel, 1874
"Pedigree of Man"

Phylogenetic Tree of Life

Bacteria
Archaea

Fox and Woese (1977) and many, many others

The tree of life is a network

Bacterial evolution is a mess of a network Dagan et al.(2008) PNAS

The problem

- How to build trees properly is not necessarily obvious, and depends on a large number of factors
- Modeling sequence similarity is challenging evolution deals us a confusing hand
- Searching tree space can be a nightmare (again, exact vs. heuristic approaches)
- Many problems in evolution cannot be effectively represented using trees

Phylogenetics is multidisciplinary

- First tree - Chemist (Linus Pauling)
- 1950s - Physicist (Margaret Dayhoff)
- 1960s - Statisticians
- 1970s - Computer Scientists
- Throughout - Biologists
- Lots of redundant terminology!

Tree Definitions

Tree Anatomy

Trees can be described using the same terminology as graphs

Tree Anatomy

We distinguish between internal and terminal features

Tree Anatomy

Some terms are used interchangeably

Rooted vs Unrooted Trees

Most methods (including parsimony) generate unrooted trees

> Tree splits (bipartitions)

(ABC \| DEF)
 Splits are compatible if they can appear in the same tree

Multifurcating Nodes

We may collapse a node in the tree for one of two reasons:

- 'Hard' polytomy (really a 3-way split)
-Lack of statistical support for any pairwise grouping

Most phylogenetic methods produce only binary trees (but you can roll back relationships that lack support)

Branch lengths

What (if anything) do branch lengths represent?

- Time?
- Sequence change?

Some methods (notably parsimony) do not produce meaningful branch lengths
0.1

Tree Shape

In general (and for the purposes of this course), the shape of a tree refers to its branching order, not to branch lengths

So the two trees on the left have the same shape

Shape can be described completely using a split decomposition of the tree

Nextstrain Intermission

But nucleotides and amino acids are not the only type of character that can be compared!

Words as homologous characters

Language trees support the express-train sequence
 Nature, 2000 of Austronesian expansion

Russell D. Gray \& Fiona M. Jordan
Department of Psychology, University of Auckland, Auckland 92019, New Zealand

Meaning	Tonga	Niue	Samoa	E. Uvea	E. Futuna	Mangareva	Marquesas	Hawaii	Tahiti	Tuamotu	Rarotonga
Canoe	vaka	vaka	va'a	vaka	vaka	vaka	vaka	wa'a	va'a	vaka	vaka
Two	ua	ua	lua	lua	lua	rua	'ua	Iua	rua	rua	rua
Five Woman Rainbow	nima fefine 'umata	lima fifine tangaloa	lima fafine nuanua	nima fafine nuanua	lima fafine nuanua	rima ahine anuanua	'ima vehine aanuanua	lima wahine aanuenue	rima vahine aanuanua	rima vahiine anuanua	rima va'ine aanuanua

No collinearity constraint
(but who cares?)

Island	Canoe
Tonga	Vaka
Niue	Vaka
Rarotonga	Vaka
Marquesas	Vaka
Hawai'i	Wa'a
Tahiti	Va'a
Samoa	Va'a
NZ	Waka

Character Convexity

Choose a tree at random (for now)

A character is convex on that tree if all states of that character can be partitioned to a separate 'region' of the tree

Think of it as a coloring problem!

What does convexity mean?

- If we have n states (waka, vaka, etc.) for a given character, then we only need the minimum possible $n-1$ state changes within the tree

- The is the most parsimonious (simplest) situation

Character Compatibility

Island	Canoe	Two
Tonga	Vaka	Ua
Niue	Vaka	Ua
Rarotonga	Vaka	Rua
Marquesas	Vaka	'ua
Hawai'i	Wa'a	Lua
Tahiti	Va'a	Rua
Samoa	Va'a	Lua
NZ	Waka	Rua

Two characters (words, alignment columns, etc.) are compatible if there exists at least one tree where both characters are convex

What is the "best" tree?

- Is it the maximum compatibility tree that maximizes the number of convex characters from the set C of characters?

maybe...but usually not

- What we typically want is the tree that minimizes the number of substitutions over all characters - this is the maximum parsimony tree

Parsimony Score

- The parsimony score (p) for a given character on a given tree T is the minimum number of changes needed to map character states onto leaves of the tree
- How do we find this minimum for a single character?

Fitch-Hartigan algorithm

One character, three states

Introduce an arbitrary root to the tree if unrooted

Mapping to internal vertices V :
$f(V)$ is the maximum number of immediate children that contain any particular character state
\rightarrow best guess for internal states
ψ is the character or characters that cover $f(V)$ children
\rightarrow equally good internal state guesses
p is equal to (p of all children) + (number of children) $-\underline{f(V)}$
\rightarrow number of required changes so far

Total Parsimony Score (for a given tree)

The maximum parsimony tree is the tree that minimizes p_{T}

How well do the characters fit the tree?

We can use the consistency index

$$
\mathrm{Cl}_{\text {character }}=\mathrm{m} / \mathrm{s}
$$

Where m is the minimum number of steps
(= number of character states -1)
And s is the actual number of steps $(\geq m)$, from the $\mathrm{F}-\mathrm{H}$ algorithm

$$
0.0<\mathrm{Cl} \leq 1.0
$$

Maximum Parsimony

- There is no closed-form solution to find T such that p_{T} is minimal
- We must carry out a search through tree space - typically use a random starting tree T_{0} and explore by permuting this tree
- Search strategies coming up next class!

Tree Searching

1. Choose a random starting tree T_{0}
2. $\mathrm{n} \leftarrow 0$ (this is the iteration number)
3. Compute $p_{\text {то }}$
4. While (patience remains)
5. Permute T_{n}
6. $T_{n+1}=\operatorname{argmin}_{p}\left(T_{n}\right.$, permuted $\left.T_{n}\right)$
7. $\mathrm{n} \leftarrow \mathrm{n}+1$
8. Output T_{n}

Problem

- There are a lot of trees!
- For n leaves, there are
$1 \times 3 \times 5 \times \ldots \times(2 n-3)$ rooted, bifurcating trees

$$
n_{T}=\frac{(2 n-3)!}{2^{n-2}(n-2)!}
$$

20 leaves $\rightarrow 8,200,794,532,637,891,559,375$ trees

Branch-and-Bound

One way to restrict the search space is to explore it systematically, but identify and stop unproductive search paths

	Character					
Species	1	2	3	4	5	6
A	1	0	0	1	1	0
B	0	0	1	0	0	0
C	1	1	0	0	0	0
D	1	1	0	1	1	1
E	0	0	1	1	1	0

Tree building procedure

Felsenstein, 2004

Number of substitutions required

Back to Polynesia

- Hypotheses about Polynesian expansion
- What are the predictions of these two models?

Predictions

- Express train: strong tree-like signal, congruent with geography. High Cl
(assuming enough time for language to evolve)
- Entangled bank: weaker signals, lots of sharing (travel / cultural exchange). Low Cl

Analysis

- 77 Austronesian languages
- 5185 terms (no equivalent to NCBI!)

Express train model 77 languages grouped into 10 categories (archaeological 'stations')

Mininum number of transitions: $9(=10-1)$

A total of 13 steps is needed to reconcile the 10 character states with the recovered tree (close to optimal)
$\mathrm{Cl}=9 / 13=0.69$

What does a Cl of 0.69 mean?

We can compare it to the Cl of random trees to see whether the fit is better than expected

Randomized trees: Average of 49 steps (CI = 9/49 = 0.053)

So there is significant tree-like signal, and the shape of the tree is consistent with express-train predictions

Untangling Oceanic settlement: the edge of the knowable

Matthew E. Hurles ${ }^{1}$, Elizabeth Matisoo-Smith ${ }^{2,3}$, Russell D. Gray ${ }^{4}$ and David Penny ${ }^{3,5}$

West Polynesia East Polynesia
(b)

Splits graph

Significant signals that conflict with the canonical tree

Not all alignment sites are informative

- Unless it can assign different scores to different trees, a given alignment column is not parsimoniously informative

Favours ((1,2),(3,4))
over ((1,3),(2,4))
and ((1,4),(2,3))
Other sites say nothing!

Parsimony treats all changes equally

- Parsimony is "model-free", so there is no distinction between frequent and infrequent changes

Long Branch Attraction

- Branches that accumulate many changes (e.g. parasites, mice) will share many homoplasies, and appear to be more similar than they really are

Parsimony: Summary

- Relatively easy (though potentially time-consuming) to use and understand
- The basic principle (the simplest explanation is the best) is attractive but not necessarily correct
- The lack of an explicit model can be an advantage or a serious disadvantage
- Throwing away uninformative alignment columns is not necessarily ideal

